Ollama 基本概念

Ollama 是一个本地化的、支持多种自然语言处理(NLP)任务的机器学习框架,专注于模型加载、推理和生成任务。

通过 Ollama,用户能够方便地与本地部署的大型预训练模型进行交互。


1. 模型(Model)

在 Ollama 中,模型是核心组成部分。它们是经过预训练的机器学习模型,能够执行不同的任务,例如文本生成、文本摘要、情感分析、对话生成等。

Ollama 支持多种流行的预训练模型,常见的模型有:

  • deepseek-v3:深度求索提供的大型语言模型,专门用于文本生成任务。
  • LLama2:Meta 提供的大型语言模型,专门用于文本生成任务。
  • GPT:OpenAI 的 GPT 系列模型,适用于广泛的对话生成、文本推理等任务。
  • BERT:用于句子理解和问答系统的预训练模型。
  • 其他自定义模型:用户可以上传自己的自定义模型,并利用 Ollama 进行推理。

模型的主要功能:

  • 推理(Inference):根据用户输入生成输出结果。
  • 微调(Fine-tuning):用户可以在已有模型的基础上使用自己的数据进行训练,从而定制化模型以适应特定的任务或领域。

模型通常是由大量参数构成的神经网络,通过对大量文本数据进行训练,能够学习语言规律并进行高效的推理。

Ollama 支持的模型可以访问:https://ollama.com/library

点击模型,可以查看到下载的命令:

下表列出一些模型的下载命令:

模型 参数 大小 下载命令
Llama 3.3 70B 43GB ollama run llama3.3
Llama 3.2 3B 2.0GB ollama run llama3.2
Llama 3.2 1B 1.3GB ollama run llama3.2:1b
Llama 3.2 Vision 11B 7.9GB ollama run llama3.2-vision
Llama 3.2 Vision 90B 55GB ollama run llama3.2-vision:90b
Llama 3.1 8B 4.7GB ollama run llama3.1
Llama 3.1 405B 231GB ollama run llama3.1:405b
Phi 4 14B 9.1GB ollama run phi4
Phi 3 Mini 3.8B 2.3GB ollama run phi3
Gemma 2 2B 1.6GB ollama run gemma2:2b
Gemma 2 9B 5.5GB ollama run gemma2
Gemma 2 27B 16GB ollama run gemma2:27b
Mistral 7B 4.1GB ollama run mistral
Moondream 2 1.4B 829MB ollama run moondream
Neural Chat 7B 4.1GB ollama run neural-chat
Starling 7B 4.1GB ollama run starling-lm
Code Llama 7B 3.8GB ollama run codellama
Llama 2 Uncensored 7B 3.8GB ollama run llama2-uncensored
LLaVA 7B 4.5GB ollama run llava
Solar 10.7B 6.1GB ollama run solar

2. 任务(Task)

Ollama 支持多种 NLP 任务。每个任务对应模型的不同应用场景,主要包括但不限于以下几种:

  • 对话生成(Chat Generation):通过与用户交互生成自然的对话回复。
  • 文本生成(Text Generation):根据给定的提示生成自然语言文本,例如写文章、生成故事等。
  • 情感分析(Sentiment Analysis):分析给定文本的情感倾向(如正面、负面、中立)。
  • 文本摘要(Text Summarization):将长文本压缩为简洁的摘要。
  • 翻译(Translation):将文本从一种语言翻译成另一种语言。

通过命令行工具,用户可以指定不同的任务,并加载不同的模型来完成特定任务。


3. 推理(Inference)

推理是指在已训练的模型上进行输入处理,生成输出的过程。

Ollama 提供了易于使用的命令行工具或 API,使用户可以快速向模型提供输入并获取结果。

推理是 Ollama 的主要功能之一,也是与模型交互的核心。

推理过程:

  1. 输入:用户向模型提供文本输入,可以是一个问题、提示或者对话内容。
  2. 模型处理:模型通过内置的神经网络根据输入生成适当的输出。
  3. 输出:模型返回生成的文本内容,可能是回复、生成的文章、翻译文本等。

Ollama 通过 API 或 CLI 与本地模型交互,能够让用户轻松实现推理任务。


4. 微调(Fine-tuning)

微调是指在一个已预训练的模型上,基于特定的领域数据进行进一步的训练,以便使模型在特定任务或领域上表现得更好。

Ollama 支持微调功能,用户可以使用自己的数据集对预训练模型进行微调,来定制模型的输出。

微调过程:

  1. 准备数据集:用户准备特定领域的数据集,数据格式通常为文本文件或 JSON 格式。
  2. 加载预训练模型:选择一个适合微调的预训练模型,例如 LLama2 或 GPT 模型。
  3. 训练:使用用户的特定数据集对模型进行训练,使其能够更好地适应目标任务。
  4. 保存和部署:训练完成后,微调过的模型可以保存并部署,供以后使用。

微调有助于模型在处理特定领域问题时表现得更加精确和高效。